OXIESEC PANEL
- Current Dir:
/
/
opt
/
alt
/
python37
/
lib
/
python3.7
/
site-packages
/
elasticsearch
/
_sync
/
client
Server IP: 2a02:4780:11:1084:0:327f:3464:10
Upload:
Create Dir:
Name
Size
Modified
Perms
π
..
-
03/16/2023 12:55:59 PM
rwxr-xr-x
π
__init__.py
206.77 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
__pycache__
-
03/16/2023 12:55:59 PM
rwxr-xr-x
π
_base.py
13.89 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
async_search.py
26.46 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
autoscaling.py
6.58 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
cat.py
116.04 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
ccr.py
31.72 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
cluster.py
40.32 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
dangling_indices.py
6.31 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
enrich.py
8.09 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
eql.py
11.99 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
features.py
3.2 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
fleet.py
29.73 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
graph.py
3.73 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
ilm.py
21.01 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
indices.py
168.2 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
ingest.py
12.8 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
license.py
10.83 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
logstash.py
5.13 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
migration.py
4.71 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
ml.py
205.98 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
monitoring.py
3.33 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
nodes.py
21.02 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
rollup.py
18.11 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
searchable_snapshots.py
10.64 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
security.py
108.8 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
shutdown.py
10.32 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
slm.py
14.28 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
snapshot.py
32.88 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
sql.py
15.11 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
ssl.py
2.08 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
tasks.py
8.61 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
text_structure.py
8.6 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
transform.py
30.6 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
utils.py
15.49 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
watcher.py
22.92 KB
03/16/2023 12:55:59 PM
rw-r--r--
π
xpack.py
4.17 KB
03/16/2023 12:55:59 PM
rw-r--r--
Editing: ml.py
Close
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import typing as t from elastic_transport import ObjectApiResponse from ._base import NamespacedClient from .utils import SKIP_IN_PATH, _quote, _rewrite_parameters class MlClient(NamespacedClient): @_rewrite_parameters() def clear_trained_model_deployment_cache( self, *, model_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Clear the cached results from a trained model deployment `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/clear-trained-model-deployment-cache.html>`_ :param model_id: The unique identifier of the trained model. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") __path = f"/_ml/trained_models/{_quote(model_id)}/deployment/cache/_clear" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def close_job( self, *, job_id: str, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Closes one or more anomaly detection jobs. A job can be opened and closed multiple times throughout its lifecycle. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-close-job.html>`_ :param job_id: Identifier for the anomaly detection job. It can be a job identifier, a group name, or a wildcard expression. You can close multiple anomaly detection jobs in a single API request by using a group name, a comma-separated list of jobs, or a wildcard expression. You can close all jobs by using `_all` or by specifying `*` as the job identifier. :param allow_no_match: Refer to the description for the `allow_no_match` query parameter. :param force: Refer to the descriptiion for the `force` query parameter. :param timeout: Refer to the description for the `timeout` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_close" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __body["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __body["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __body["timeout"] = timeout if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def delete_calendar( self, *, calendar_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-calendar.html>`_ :param calendar_id: A string that uniquely identifies a calendar. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_calendar_event( self, *, calendar_id: str, event_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes scheduled events from a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-calendar-event.html>`_ :param calendar_id: The ID of the calendar to modify :param event_id: The ID of the event to remove from the calendar """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") if event_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'event_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}/events/{_quote(event_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_calendar_job( self, *, calendar_id: str, job_id: t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes anomaly detection jobs from a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-calendar-job.html>`_ :param calendar_id: A string that uniquely identifies a calendar. :param job_id: An identifier for the anomaly detection jobs. It can be a job identifier, a group name, or a comma-separated list of jobs or groups. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}/jobs/{_quote(job_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_data_frame_analytics( self, *, id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes an existing data frame analytics job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/delete-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. :param force: If `true`, it deletes a job that is not stopped; this method is quicker than stopping and deleting the job. :param timeout: The time to wait for the job to be deleted. """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'id'") __path = f"/_ml/data_frame/analytics/{_quote(id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_datafeed( self, *, datafeed_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes an existing datafeed. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-datafeed.html>`_ :param datafeed_id: A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param force: Use to forcefully delete a started datafeed; this method is quicker than stopping and deleting the datafeed. """ if datafeed_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'datafeed_id'") __path = f"/_ml/datafeeds/{_quote(datafeed_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def delete_expired_data( self, *, job_id: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, requests_per_second: t.Optional[float] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes expired and unused machine learning data. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-expired-data.html>`_ :param job_id: Identifier for an anomaly detection job. It can be a job identifier, a group name, or a wildcard expression. :param requests_per_second: The desired requests per second for the deletion processes. The default behavior is no throttling. :param timeout: How long can the underlying delete processes run until they are canceled. """ if job_id not in SKIP_IN_PATH: __path = f"/_ml/_delete_expired_data/{_quote(job_id)}" else: __path = "/_ml/_delete_expired_data" __query: t.Dict[str, t.Any] = {} __body: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if requests_per_second is not None: __body["requests_per_second"] = requests_per_second if timeout is not None: __body["timeout"] = timeout if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def delete_filter( self, *, filter_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes a filter. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-filter.html>`_ :param filter_id: A string that uniquely identifies a filter. """ if filter_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'filter_id'") __path = f"/_ml/filters/{_quote(filter_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_forecast( self, *, job_id: str, forecast_id: t.Optional[str] = None, allow_no_forecasts: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes forecasts from a machine learning job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-forecast.html>`_ :param job_id: Identifier for the anomaly detection job. :param forecast_id: A comma-separated list of forecast identifiers. If you do not specify this optional parameter or if you specify `_all` or `*` the API deletes all forecasts from the job. :param allow_no_forecasts: Specifies whether an error occurs when there are no forecasts. In particular, if this parameter is set to `false` and there are no forecasts associated with the job, attempts to delete all forecasts return an error. :param timeout: Specifies the period of time to wait for the completion of the delete operation. When this period of time elapses, the API fails and returns an error. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if job_id not in SKIP_IN_PATH and forecast_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_forecast/{_quote(forecast_id)}" elif job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_forecast" else: raise ValueError("Couldn't find a path for the given parameters") __query: t.Dict[str, t.Any] = {} if allow_no_forecasts is not None: __query["allow_no_forecasts"] = allow_no_forecasts if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_job( self, *, job_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, wait_for_completion: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes an existing anomaly detection job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-job.html>`_ :param job_id: Identifier for the anomaly detection job. :param force: Use to forcefully delete an opened job; this method is quicker than closing and deleting the job. :param wait_for_completion: Specifies whether the request should return immediately or wait until the job deletion completes. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if wait_for_completion is not None: __query["wait_for_completion"] = wait_for_completion __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_model_snapshot( self, *, job_id: str, snapshot_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes an existing model snapshot. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-delete-snapshot.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: Identifier for the model snapshot. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if snapshot_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'snapshot_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_trained_model( self, *, model_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes an existing trained inference model that is currently not referenced by an ingest pipeline. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/delete-trained-models.html>`_ :param model_id: The unique identifier of the trained model. :param force: Forcefully deletes a trained model that is referenced by ingest pipelines or has a started deployment. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") __path = f"/_ml/trained_models/{_quote(model_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters() def delete_trained_model_alias( self, *, model_id: str, model_alias: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Deletes a model alias that refers to the trained model `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/delete-trained-models-aliases.html>`_ :param model_id: The trained model ID to which the model alias refers. :param model_alias: The model alias to delete. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if model_alias in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_alias'") __path = f"/_ml/trained_models/{_quote(model_id)}/model_aliases/{_quote(model_alias)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "DELETE", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def estimate_model_memory( self, *, analysis_config: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, max_bucket_cardinality: t.Optional[t.Mapping[str, int]] = None, overall_cardinality: t.Optional[t.Mapping[str, int]] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Estimates the model memory `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-apis.html>`_ :param analysis_config: For a list of the properties that you can specify in the `analysis_config` component of the body of this API. :param max_bucket_cardinality: Estimates of the highest cardinality in a single bucket that is observed for influencer fields over the time period that the job analyzes data. To produce a good answer, values must be provided for all influencer fields. Providing values for fields that are not listed as `influencers` has no effect on the estimation. :param overall_cardinality: Estimates of the cardinality that is observed for fields over the whole time period that the job analyzes data. To produce a good answer, values must be provided for fields referenced in the `by_field_name`, `over_field_name` and `partition_field_name` of any detectors. Providing values for other fields has no effect on the estimation. It can be omitted from the request if no detectors have a `by_field_name`, `over_field_name` or `partition_field_name`. """ __path = "/_ml/anomaly_detectors/_estimate_model_memory" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if analysis_config is not None: __body["analysis_config"] = analysis_config if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if max_bucket_cardinality is not None: __body["max_bucket_cardinality"] = max_bucket_cardinality if overall_cardinality is not None: __body["overall_cardinality"] = overall_cardinality if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def evaluate_data_frame( self, *, evaluation: t.Mapping[str, t.Any], index: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, query: t.Optional[t.Mapping[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Evaluates the data frame analytics for an annotated index. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/evaluate-dfanalytics.html>`_ :param evaluation: Defines the type of evaluation you want to perform. :param index: Defines the `index` in which the evaluation will be performed. :param query: A query clause that retrieves a subset of data from the source index. """ if evaluation is None: raise ValueError("Empty value passed for parameter 'evaluation'") if index is None: raise ValueError("Empty value passed for parameter 'index'") __path = "/_ml/data_frame/_evaluate" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if evaluation is not None: __body["evaluation"] = evaluation if index is not None: __body["index"] = index if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if query is not None: __body["query"] = query __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def explain_data_frame_analytics( self, *, id: t.Optional[str] = None, allow_lazy_start: t.Optional[bool] = None, analysis: t.Optional[t.Mapping[str, t.Any]] = None, analyzed_fields: t.Optional[t.Mapping[str, t.Any]] = None, description: t.Optional[str] = None, dest: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, max_num_threads: t.Optional[int] = None, model_memory_limit: t.Optional[str] = None, pretty: t.Optional[bool] = None, source: t.Optional[t.Mapping[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Explains a data frame analytics config. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/explain-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param allow_lazy_start: Specifies whether this job can start when there is insufficient machine learning node capacity for it to be immediately assigned to a node. :param analysis: The analysis configuration, which contains the information necessary to perform one of the following types of analysis: classification, outlier detection, or regression. :param analyzed_fields: Specify includes and/or excludes patterns to select which fields will be included in the analysis. The patterns specified in excludes are applied last, therefore excludes takes precedence. In other words, if the same field is specified in both includes and excludes, then the field will not be included in the analysis. :param description: A description of the job. :param dest: The destination configuration, consisting of index and optionally results_field (ml by default). :param max_num_threads: The maximum number of threads to be used by the analysis. Using more threads may decrease the time necessary to complete the analysis at the cost of using more CPU. Note that the process may use additional threads for operational functionality other than the analysis itself. :param model_memory_limit: The approximate maximum amount of memory resources that are permitted for analytical processing. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create data frame analytics jobs that have `model_memory_limit` values greater than that setting. :param source: The configuration of how to source the analysis data. It requires an index. Optionally, query and _source may be specified. """ if id not in SKIP_IN_PATH: __path = f"/_ml/data_frame/analytics/{_quote(id)}/_explain" else: __path = "/_ml/data_frame/analytics/_explain" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_lazy_start is not None: __body["allow_lazy_start"] = allow_lazy_start if analysis is not None: __body["analysis"] = analysis if analyzed_fields is not None: __body["analyzed_fields"] = analyzed_fields if description is not None: __body["description"] = description if dest is not None: __body["dest"] = dest if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if max_num_threads is not None: __body["max_num_threads"] = max_num_threads if model_memory_limit is not None: __body["model_memory_limit"] = model_memory_limit if pretty is not None: __query["pretty"] = pretty if source is not None: __body["source"] = source if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def flush_job( self, *, job_id: str, advance_time: t.Optional[t.Union[str, t.Any]] = None, calc_interim: t.Optional[bool] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, skip_time: t.Optional[t.Union[str, t.Any]] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Forces any buffered data to be processed by the job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-flush-job.html>`_ :param job_id: Identifier for the anomaly detection job. :param advance_time: Refer to the description for the `advance_time` query parameter. :param calc_interim: Refer to the description for the `calc_interim` query parameter. :param end: Refer to the description for the `end` query parameter. :param skip_time: Refer to the description for the `skip_time` query parameter. :param start: Refer to the description for the `start` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_flush" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if advance_time is not None: __body["advance_time"] = advance_time if calc_interim is not None: __body["calc_interim"] = calc_interim if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if skip_time is not None: __body["skip_time"] = skip_time if start is not None: __body["start"] = start if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def forecast( self, *, job_id: str, duration: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, error_trace: t.Optional[bool] = None, expires_in: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, max_model_memory: t.Optional[str] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Predicts the future behavior of a time series by using its historical behavior. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-forecast.html>`_ :param job_id: Identifier for the anomaly detection job. The job must be open when you create a forecast; otherwise, an error occurs. :param duration: Refer to the description for the `duration` query parameter. :param expires_in: Refer to the description for the `expires_in` query parameter. :param max_model_memory: Refer to the description for the `max_model_memory` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_forecast" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if duration is not None: __body["duration"] = duration if error_trace is not None: __query["error_trace"] = error_trace if expires_in is not None: __body["expires_in"] = expires_in if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if max_model_memory is not None: __body["max_model_memory"] = max_model_memory if pretty is not None: __query["pretty"] = pretty if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_buckets( self, *, job_id: str, timestamp: t.Optional[t.Union[str, t.Any]] = None, anomaly_score: t.Optional[float] = None, desc: t.Optional[bool] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, exclude_interim: t.Optional[bool] = None, expand: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, sort: t.Optional[str] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves anomaly detection job results for one or more buckets. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-bucket.html>`_ :param job_id: Identifier for the anomaly detection job. :param timestamp: The timestamp of a single bucket result. If you do not specify this parameter, the API returns information about all buckets. :param anomaly_score: Refer to the description for the `anomaly_score` query parameter. :param desc: Refer to the description for the `desc` query parameter. :param end: Refer to the description for the `end` query parameter. :param exclude_interim: Refer to the description for the `exclude_interim` query parameter. :param expand: Refer to the description for the `expand` query parameter. :param from_: Skips the specified number of buckets. :param page: :param size: Specifies the maximum number of buckets to obtain. :param sort: Refer to the desription for the `sort` query parameter. :param start: Refer to the description for the `start` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if job_id not in SKIP_IN_PATH and timestamp not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/buckets/{_quote(timestamp)}" elif job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/buckets" else: raise ValueError("Couldn't find a path for the given parameters") __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if anomaly_score is not None: __body["anomaly_score"] = anomaly_score if desc is not None: __body["desc"] = desc if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if exclude_interim is not None: __body["exclude_interim"] = exclude_interim if expand is not None: __body["expand"] = expand if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if page is not None: __body["page"] = page if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if sort is not None: __body["sort"] = sort if start is not None: __body["start"] = start if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_calendar_events( self, *, calendar_id: str, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, job_id: t.Optional[str] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves information about the scheduled events in calendars. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-calendar-event.html>`_ :param calendar_id: A string that uniquely identifies a calendar. You can get information for multiple calendars by using a comma-separated list of ids or a wildcard expression. You can get information for all calendars by using `_all` or `*` or by omitting the calendar identifier. :param end: Specifies to get events with timestamps earlier than this time. :param from_: Skips the specified number of events. :param job_id: Specifies to get events for a specific anomaly detection job identifier or job group. It must be used with a calendar identifier of `_all` or `*`. :param size: Specifies the maximum number of events to obtain. :param start: Specifies to get events with timestamps after this time. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}/events" __query: t.Dict[str, t.Any] = {} if end is not None: __query["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if job_id is not None: __query["job_id"] = job_id if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if start is not None: __query["start"] = start __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_calendars( self, *, calendar_id: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves configuration information for calendars. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-calendar.html>`_ :param calendar_id: A string that uniquely identifies a calendar. You can get information for multiple calendars by using a comma-separated list of ids or a wildcard expression. You can get information for all calendars by using `_all` or `*` or by omitting the calendar identifier. :param from_: Skips the specified number of calendars. This parameter is supported only when you omit the calendar identifier. :param page: This object is supported only when you omit the calendar identifier. :param size: Specifies the maximum number of calendars to obtain. This parameter is supported only when you omit the calendar identifier. """ if calendar_id not in SKIP_IN_PATH: __path = f"/_ml/calendars/{_quote(calendar_id)}" else: __path = "/_ml/calendars" __query: t.Dict[str, t.Any] = {} __body: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if page is not None: __body["page"] = page if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_categories( self, *, job_id: str, category_id: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, partition_field_value: t.Optional[str] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves anomaly detection job results for one or more categories. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-category.html>`_ :param job_id: Identifier for the anomaly detection job. :param category_id: Identifier for the category, which is unique in the job. If you specify neither the category ID nor the partition_field_value, the API returns information about all categories. If you specify only the partition_field_value, it returns information about all categories for the specified partition. :param from_: Skips the specified number of categories. :param page: :param partition_field_value: Only return categories for the specified partition. :param size: Specifies the maximum number of categories to obtain. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if job_id not in SKIP_IN_PATH and category_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/categories/{_quote(category_id)}" elif job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/categories" else: raise ValueError("Couldn't find a path for the given parameters") __query: t.Dict[str, t.Any] = {} __body: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if page is not None: __body["page"] = page if partition_field_value is not None: __query["partition_field_value"] = partition_field_value if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_data_frame_analytics( self, *, id: t.Optional[str] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, exclude_generated: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves configuration information for data frame analytics jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. If you do not specify this option, the API returns information for the first hundred data frame analytics jobs. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no data frame analytics jobs that match. 2. Contains the `_all` string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value returns an empty data_frame_analytics array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a 404 status code when there are no matches or only partial matches. :param exclude_generated: Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster. :param from_: Skips the specified number of data frame analytics jobs. :param size: Specifies the maximum number of data frame analytics jobs to obtain. """ if id not in SKIP_IN_PATH: __path = f"/_ml/data_frame/analytics/{_quote(id)}" else: __path = "/_ml/data_frame/analytics" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if exclude_generated is not None: __query["exclude_generated"] = exclude_generated if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_data_frame_analytics_stats( self, *, id: t.Optional[str] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, verbose: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves usage information for data frame analytics jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-dfanalytics-stats.html>`_ :param id: Identifier for the data frame analytics job. If you do not specify this option, the API returns information for the first hundred data frame analytics jobs. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no data frame analytics jobs that match. 2. Contains the `_all` string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value returns an empty data_frame_analytics array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a 404 status code when there are no matches or only partial matches. :param from_: Skips the specified number of data frame analytics jobs. :param size: Specifies the maximum number of data frame analytics jobs to obtain. :param verbose: Defines whether the stats response should be verbose. """ if id not in SKIP_IN_PATH: __path = f"/_ml/data_frame/analytics/{_quote(id)}/_stats" else: __path = "/_ml/data_frame/analytics/_stats" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if verbose is not None: __query["verbose"] = verbose __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters() def get_datafeed_stats( self, *, datafeed_id: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves usage information for datafeeds. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-datafeed-stats.html>`_ :param datafeed_id: Identifier for the datafeed. It can be a datafeed identifier or a wildcard expression. If you do not specify one of these options, the API returns information about all datafeeds. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no datafeeds that match. 2. Contains the `_all` string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `datafeeds` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. """ if datafeed_id not in SKIP_IN_PATH: __path = f"/_ml/datafeeds/{_quote(datafeed_id)}/_stats" else: __path = "/_ml/datafeeds/_stats" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters() def get_datafeeds( self, *, datafeed_id: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, exclude_generated: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves configuration information for datafeeds. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-datafeed.html>`_ :param datafeed_id: Identifier for the datafeed. It can be a datafeed identifier or a wildcard expression. If you do not specify one of these options, the API returns information about all datafeeds. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no datafeeds that match. 2. Contains the `_all` string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `datafeeds` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. :param exclude_generated: Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster. """ if datafeed_id not in SKIP_IN_PATH: __path = f"/_ml/datafeeds/{_quote(datafeed_id)}" else: __path = "/_ml/datafeeds" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if exclude_generated is not None: __query["exclude_generated"] = exclude_generated if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_filters( self, *, filter_id: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves filters. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-filter.html>`_ :param filter_id: A string that uniquely identifies a filter. :param from_: Skips the specified number of filters. :param size: Specifies the maximum number of filters to obtain. """ if filter_id not in SKIP_IN_PATH: __path = f"/_ml/filters/{_quote(filter_id)}" else: __path = "/_ml/filters" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_influencers( self, *, job_id: str, desc: t.Optional[bool] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, exclude_interim: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, influencer_score: t.Optional[float] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, sort: t.Optional[str] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves anomaly detection job results for one or more influencers. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-influencer.html>`_ :param job_id: Identifier for the anomaly detection job. :param desc: If true, the results are sorted in descending order. :param end: Returns influencers with timestamps earlier than this time. The default value means it is unset and results are not limited to specific timestamps. :param exclude_interim: If true, the output excludes interim results. By default, interim results are included. :param from_: Skips the specified number of influencers. :param influencer_score: Returns influencers with anomaly scores greater than or equal to this value. :param page: :param size: Specifies the maximum number of influencers to obtain. :param sort: Specifies the sort field for the requested influencers. By default, the influencers are sorted by the `influencer_score` value. :param start: Returns influencers with timestamps after this time. The default value means it is unset and results are not limited to specific timestamps. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/influencers" __query: t.Dict[str, t.Any] = {} __body: t.Dict[str, t.Any] = {} if desc is not None: __query["desc"] = desc if end is not None: __query["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if exclude_interim is not None: __query["exclude_interim"] = exclude_interim if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if influencer_score is not None: __query["influencer_score"] = influencer_score if page is not None: __body["page"] = page if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if sort is not None: __query["sort"] = sort if start is not None: __query["start"] = start if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def get_job_stats( self, *, job_id: t.Optional[str] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves usage information for anomaly detection jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-job-stats.html>`_ :param job_id: Identifier for the anomaly detection job. It can be a job identifier, a group name, a comma-separated list of jobs, or a wildcard expression. If you do not specify one of these options, the API returns information for all anomaly detection jobs. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no jobs that match. 2. Contains the _all string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. If `true`, the API returns an empty `jobs` array when there are no matches and the subset of results when there are partial matches. If `false`, the API returns a `404` status code when there are no matches or only partial matches. """ if job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_stats" else: __path = "/_ml/anomaly_detectors/_stats" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters() def get_jobs( self, *, job_id: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, exclude_generated: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves configuration information for anomaly detection jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-job.html>`_ :param job_id: Identifier for the anomaly detection job. It can be a job identifier, a group name, or a wildcard expression. If you do not specify one of these options, the API returns information for all anomaly detection jobs. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no jobs that match. 2. Contains the _all string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value is `true`, which returns an empty `jobs` array when there are no matches and the subset of results when there are partial matches. If this parameter is `false`, the request returns a `404` status code when there are no matches or only partial matches. :param exclude_generated: Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster. """ if job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}" else: __path = "/_ml/anomaly_detectors" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if exclude_generated is not None: __query["exclude_generated"] = exclude_generated if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters() def get_memory_stats( self, *, node_id: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, master_timeout: t.Optional[ t.Union["t.Literal[-1]", "t.Literal[0]", str] ] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Returns information on how ML is using memory. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-ml-memory.html>`_ :param node_id: The names of particular nodes in the cluster to target. For example, `nodeId1,nodeId2` or `ml:true` :param master_timeout: Period to wait for a connection to the master node. If no response is received before the timeout expires, the request fails and returns an error. :param timeout: Period to wait for a response. If no response is received before the timeout expires, the request fails and returns an error. """ if node_id not in SKIP_IN_PATH: __path = f"/_ml/memory/{_quote(node_id)}/_stats" else: __path = "/_ml/memory/_stats" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if master_timeout is not None: __query["master_timeout"] = master_timeout if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters() def get_model_snapshot_upgrade_stats( self, *, job_id: str, snapshot_id: str, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Gets stats for anomaly detection job model snapshot upgrades that are in progress. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-job-model-snapshot-upgrade-stats.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: A numerical character string that uniquely identifies the model snapshot. You can get information for multiple snapshots by using a comma-separated list or a wildcard expression. You can get all snapshots by using `_all`, by specifying `*` as the snapshot ID, or by omitting the snapshot ID. :param allow_no_match: Specifies what to do when the request: - Contains wildcard expressions and there are no jobs that match. - Contains the _all string or no identifiers and there are no matches. - Contains wildcard expressions and there are only partial matches. The default value is true, which returns an empty jobs array when there are no matches and the subset of results when there are partial matches. If this parameter is false, the request returns a 404 status code when there are no matches or only partial matches. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if snapshot_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'snapshot_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}/_upgrade/_stats" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_model_snapshots( self, *, job_id: str, snapshot_id: t.Optional[str] = None, desc: t.Optional[bool] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, sort: t.Optional[str] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves information about model snapshots. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-snapshot.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: A numerical character string that uniquely identifies the model snapshot. You can get information for multiple snapshots by using a comma-separated list or a wildcard expression. You can get all snapshots by using `_all`, by specifying `*` as the snapshot ID, or by omitting the snapshot ID. :param desc: Refer to the description for the `desc` query parameter. :param end: Refer to the description for the `end` query parameter. :param from_: Skips the specified number of snapshots. :param page: :param size: Specifies the maximum number of snapshots to obtain. :param sort: Refer to the description for the `sort` query parameter. :param start: Refer to the description for the `start` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if job_id not in SKIP_IN_PATH and snapshot_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}" elif job_id not in SKIP_IN_PATH: __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots" else: raise ValueError("Couldn't find a path for the given parameters") __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if desc is not None: __body["desc"] = desc if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if page is not None: __body["page"] = page if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if sort is not None: __body["sort"] = sort if start is not None: __body["start"] = start if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def get_overall_buckets( self, *, job_id: str, allow_no_match: t.Optional[bool] = None, bucket_span: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, exclude_interim: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, overall_score: t.Optional[t.Union[float, str]] = None, pretty: t.Optional[bool] = None, start: t.Optional[t.Union[str, t.Any]] = None, top_n: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves overall bucket results that summarize the bucket results of multiple anomaly detection jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-overall-buckets.html>`_ :param job_id: Identifier for the anomaly detection job. It can be a job identifier, a group name, a comma-separated list of jobs or groups, or a wildcard expression. You can summarize the bucket results for all anomaly detection jobs by using `_all` or by specifying `*` as the `<job_id>`. :param allow_no_match: Refer to the description for the `allow_no_match` query parameter. :param bucket_span: Refer to the description for the `bucket_span` query parameter. :param end: Refer to the description for the `end` query parameter. :param exclude_interim: Refer to the description for the `exclude_interim` query parameter. :param overall_score: Refer to the description for the `overall_score` query parameter. :param start: Refer to the description for the `start` query parameter. :param top_n: Refer to the description for the `top_n` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/overall_buckets" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __body["allow_no_match"] = allow_no_match if bucket_span is not None: __body["bucket_span"] = bucket_span if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if exclude_interim is not None: __body["exclude_interim"] = exclude_interim if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if overall_score is not None: __body["overall_score"] = overall_score if pretty is not None: __query["pretty"] = pretty if start is not None: __body["start"] = start if top_n is not None: __body["top_n"] = top_n if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, parameter_aliases={"from": "from_"}, ) def get_records( self, *, job_id: str, desc: t.Optional[bool] = None, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, exclude_interim: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, page: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, record_score: t.Optional[float] = None, size: t.Optional[int] = None, sort: t.Optional[str] = None, start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves anomaly records for an anomaly detection job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-get-record.html>`_ :param job_id: Identifier for the anomaly detection job. :param desc: Refer to the description for the `desc` query parameter. :param end: Refer to the description for the `end` query parameter. :param exclude_interim: Refer to the description for the `exclude_interim` query parameter. :param from_: Skips the specified number of records. :param page: :param record_score: Refer to the description for the `record_score` query parameter. :param size: Specifies the maximum number of records to obtain. :param sort: Refer to the description for the `sort` query parameter. :param start: Refer to the description for the `start` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/results/records" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if desc is not None: __body["desc"] = desc if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if exclude_interim is not None: __body["exclude_interim"] = exclude_interim if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if page is not None: __body["page"] = page if pretty is not None: __query["pretty"] = pretty if record_score is not None: __body["record_score"] = record_score if size is not None: __query["size"] = size if sort is not None: __body["sort"] = sort if start is not None: __body["start"] = start if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_trained_models( self, *, model_id: t.Optional[str] = None, allow_no_match: t.Optional[bool] = None, decompress_definition: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, exclude_generated: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, include: t.Optional[ t.Union[ "t.Literal['definition', 'feature_importance_baseline', 'hyperparameters', 'total_feature_importance']", str, ] ] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, tags: t.Optional[str] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves configuration information for a trained inference model. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-trained-models.html>`_ :param model_id: The unique identifier of the trained model. :param allow_no_match: Specifies what to do when the request: - Contains wildcard expressions and there are no models that match. - Contains the _all string or no identifiers and there are no matches. - Contains wildcard expressions and there are only partial matches. If true, it returns an empty array when there are no matches and the subset of results when there are partial matches. :param decompress_definition: Specifies whether the included model definition should be returned as a JSON map (true) or in a custom compressed format (false). :param exclude_generated: Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster. :param from_: Skips the specified number of models. :param include: A comma delimited string of optional fields to include in the response body. :param size: Specifies the maximum number of models to obtain. :param tags: A comma delimited string of tags. A trained model can have many tags, or none. When supplied, only trained models that contain all the supplied tags are returned. """ if model_id not in SKIP_IN_PATH: __path = f"/_ml/trained_models/{_quote(model_id)}" else: __path = "/_ml/trained_models" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if decompress_definition is not None: __query["decompress_definition"] = decompress_definition if error_trace is not None: __query["error_trace"] = error_trace if exclude_generated is not None: __query["exclude_generated"] = exclude_generated if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if include is not None: __query["include"] = include if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size if tags is not None: __query["tags"] = tags __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( parameter_aliases={"from": "from_"}, ) def get_trained_models_stats( self, *, model_id: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, from_: t.Optional[int] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Retrieves usage information for trained inference models. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-trained-models-stats.html>`_ :param model_id: The unique identifier of the trained model or a model alias. It can be a comma-separated list or a wildcard expression. :param allow_no_match: Specifies what to do when the request: - Contains wildcard expressions and there are no models that match. - Contains the _all string or no identifiers and there are no matches. - Contains wildcard expressions and there are only partial matches. If true, it returns an empty array when there are no matches and the subset of results when there are partial matches. :param from_: Skips the specified number of models. :param size: Specifies the maximum number of models to obtain. """ if model_id not in SKIP_IN_PATH: __path = f"/_ml/trained_models/{_quote(model_id)}/_stats" else: __path = "/_ml/trained_models/_stats" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if from_ is not None: __query["from"] = from_ if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if size is not None: __query["size"] = size __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def infer_trained_model( self, *, model_id: str, docs: t.Union[ t.List[t.Mapping[str, t.Any]], t.Tuple[t.Mapping[str, t.Any], ...] ], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, inference_config: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Evaluate a trained model. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/infer-trained-model.html>`_ :param model_id: The unique identifier of the trained model. :param docs: An array of objects to pass to the model for inference. The objects should contain a fields matching your configured trained model input. Typically, for NLP models, the field name is `text_field`. Currently, for NLP models, only a single value is allowed. :param inference_config: The inference configuration updates to apply on the API call :param timeout: Controls the amount of time to wait for inference results. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if docs is None: raise ValueError("Empty value passed for parameter 'docs'") __path = f"/_ml/trained_models/{_quote(model_id)}/_infer" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if docs is not None: __body["docs"] = docs if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if inference_config is not None: __body["inference_config"] = inference_config if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def info( self, *, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Returns defaults and limits used by machine learning. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/get-ml-info.html>`_ """ __path = "/_ml/info" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "GET", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def open_job( self, *, job_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Opens one or more anomaly detection jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-open-job.html>`_ :param job_id: Identifier for the anomaly detection job. :param timeout: Refer to the description for the `timeout` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_open" __query: t.Dict[str, t.Any] = {} __body: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __body["timeout"] = timeout if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def post_calendar_events( self, *, calendar_id: str, events: t.Union[ t.List[t.Mapping[str, t.Any]], t.Tuple[t.Mapping[str, t.Any], ...] ], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Posts scheduled events in a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-post-calendar-event.html>`_ :param calendar_id: A string that uniquely identifies a calendar. :param events: A list of one of more scheduled events. The eventβs start and end times can be specified as integer milliseconds since the epoch or as a string in ISO 8601 format. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") if events is None: raise ValueError("Empty value passed for parameter 'events'") __path = f"/_ml/calendars/{_quote(calendar_id)}/events" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if events is not None: __body["events"] = events if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_name="data", ) def post_data( self, *, job_id: str, data: t.Union[t.List[t.Any], t.Tuple[t.Any, ...]], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, reset_end: t.Optional[t.Union[str, t.Any]] = None, reset_start: t.Optional[t.Union[str, t.Any]] = None, ) -> ObjectApiResponse[t.Any]: """ Sends data to an anomaly detection job for analysis. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-post-data.html>`_ :param job_id: Identifier for the anomaly detection job. The job must have a state of open to receive and process the data. :param data: :param reset_end: Specifies the end of the bucket resetting range. :param reset_start: Specifies the start of the bucket resetting range. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if data is None: raise ValueError("Empty value passed for parameter 'data'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_data" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if reset_end is not None: __query["reset_end"] = reset_end if reset_start is not None: __query["reset_start"] = reset_start __body = data __headers = { "accept": "application/json", "content-type": "application/x-ndjson", } return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def preview_data_frame_analytics( self, *, id: t.Optional[str] = None, config: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Previews that will be analyzed given a data frame analytics config. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/preview-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. :param config: A data frame analytics config as described in create data frame analytics jobs. Note that `id` and `dest` donβt need to be provided in the context of this API. """ if id not in SKIP_IN_PATH: __path = f"/_ml/data_frame/analytics/{_quote(id)}/_preview" else: __path = "/_ml/data_frame/analytics/_preview" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if config is not None: __body["config"] = config if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def preview_datafeed( self, *, datafeed_id: t.Optional[str] = None, datafeed_config: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, job_config: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Previews a datafeed. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-preview-datafeed.html>`_ :param datafeed_id: A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. NOTE: If you use this path parameter, you cannot provide datafeed or anomaly detection job configuration details in the request body. :param datafeed_config: The datafeed definition to preview. :param job_config: The configuration details for the anomaly detection job that is associated with the datafeed. If the `datafeed_config` object does not include a `job_id` that references an existing anomaly detection job, you must supply this `job_config` object. If you include both a `job_id` and a `job_config`, the latter information is used. You cannot specify a `job_config` object unless you also supply a `datafeed_config` object. """ if datafeed_id not in SKIP_IN_PATH: __path = f"/_ml/datafeeds/{_quote(datafeed_id)}/_preview" else: __path = "/_ml/datafeeds/_preview" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if datafeed_config is not None: __body["datafeed_config"] = datafeed_config if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if job_config is not None: __body["job_config"] = job_config if pretty is not None: __query["pretty"] = pretty if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def put_calendar( self, *, calendar_id: str, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, job_ids: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Instantiates a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-put-calendar.html>`_ :param calendar_id: A string that uniquely identifies a calendar. :param description: A description of the calendar. :param job_ids: An array of anomaly detection job identifiers. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if job_ids is not None: __body["job_ids"] = job_ids if pretty is not None: __query["pretty"] = pretty if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def put_calendar_job( self, *, calendar_id: str, job_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Adds an anomaly detection job to a calendar. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-put-calendar-job.html>`_ :param calendar_id: A string that uniquely identifies a calendar. :param job_id: An identifier for the anomaly detection jobs. It can be a job identifier, a group name, or a comma-separated list of jobs or groups. """ if calendar_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'calendar_id'") if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/calendars/{_quote(calendar_id)}/jobs/{_quote(job_id)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ignore_deprecated_options={"headers"}, ) def put_data_frame_analytics( self, *, id: str, analysis: t.Mapping[str, t.Any], dest: t.Mapping[str, t.Any], source: t.Mapping[str, t.Any], allow_lazy_start: t.Optional[bool] = None, analyzed_fields: t.Optional[t.Mapping[str, t.Any]] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, headers: t.Optional[ t.Mapping[str, t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]]] ] = None, human: t.Optional[bool] = None, max_num_threads: t.Optional[int] = None, model_memory_limit: t.Optional[str] = None, pretty: t.Optional[bool] = None, version: t.Optional[str] = None, ) -> ObjectApiResponse[t.Any]: """ Instantiates a data frame analytics job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/put-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param analysis: The analysis configuration, which contains the information necessary to perform one of the following types of analysis: classification, outlier detection, or regression. :param dest: The destination configuration. :param source: The configuration of how to source the analysis data. :param allow_lazy_start: Specifies whether this job can start when there is insufficient machine learning node capacity for it to be immediately assigned to a node. If set to `false` and a machine learning node with capacity to run the job cannot be immediately found, the API returns an error. If set to `true`, the API does not return an error; the job waits in the `starting` state until sufficient machine learning node capacity is available. This behavior is also affected by the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. :param analyzed_fields: Specifies `includes` and/or `excludes` patterns to select which fields will be included in the analysis. The patterns specified in `excludes` are applied last, therefore `excludes` takes precedence. In other words, if the same field is specified in both `includes` and `excludes`, then the field will not be included in the analysis. If `analyzed_fields` is not set, only the relevant fields will be included. For example, all the numeric fields for outlier detection. The supported fields vary for each type of analysis. Outlier detection requires numeric or `boolean` data to analyze. The algorithms donβt support missing values therefore fields that have data types other than numeric or boolean are ignored. Documents where included fields contain missing values, null values, or an array are also ignored. Therefore the `dest` index may contain documents that donβt have an outlier score. Regression supports fields that are numeric, `boolean`, `text`, `keyword`, and `ip` data types. It is also tolerant of missing values. Fields that are supported are included in the analysis, other fields are ignored. Documents where included fields contain an array with two or more values are also ignored. Documents in the `dest` index that donβt contain a results field are not included in the regression analysis. Classification supports fields that are numeric, `boolean`, `text`, `keyword`, and `ip` data types. It is also tolerant of missing values. Fields that are supported are included in the analysis, other fields are ignored. Documents where included fields contain an array with two or more values are also ignored. Documents in the `dest` index that donβt contain a results field are not included in the classification analysis. Classification analysis can be improved by mapping ordinal variable values to a single number. For example, in case of age ranges, you can model the values as `0-14 = 0`, `15-24 = 1`, `25-34 = 2`, and so on. :param description: A description of the job. :param headers: :param max_num_threads: The maximum number of threads to be used by the analysis. Using more threads may decrease the time necessary to complete the analysis at the cost of using more CPU. Note that the process may use additional threads for operational functionality other than the analysis itself. :param model_memory_limit: The approximate maximum amount of memory resources that are permitted for analytical processing. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create data frame analytics jobs that have `model_memory_limit` values greater than that setting. :param version: """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'id'") if analysis is None: raise ValueError("Empty value passed for parameter 'analysis'") if dest is None: raise ValueError("Empty value passed for parameter 'dest'") if source is None: raise ValueError("Empty value passed for parameter 'source'") __path = f"/_ml/data_frame/analytics/{_quote(id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if analysis is not None: __body["analysis"] = analysis if dest is not None: __body["dest"] = dest if source is not None: __body["source"] = source if allow_lazy_start is not None: __body["allow_lazy_start"] = allow_lazy_start if analyzed_fields is not None: __body["analyzed_fields"] = analyzed_fields if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if headers is not None: __body["headers"] = headers if human is not None: __query["human"] = human if max_num_threads is not None: __body["max_num_threads"] = max_num_threads if model_memory_limit is not None: __body["model_memory_limit"] = model_memory_limit if pretty is not None: __query["pretty"] = pretty if version is not None: __body["version"] = version __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ignore_deprecated_options={"headers"}, ) def put_datafeed( self, *, datafeed_id: str, aggregations: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, allow_no_indices: t.Optional[bool] = None, chunking_config: t.Optional[t.Mapping[str, t.Any]] = None, delayed_data_check_config: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, expand_wildcards: t.Optional[ t.Union[ t.Union["t.Literal['all', 'closed', 'hidden', 'none', 'open']", str], t.Union[ t.List[ t.Union[ "t.Literal['all', 'closed', 'hidden', 'none', 'open']", str ] ], t.Tuple[ t.Union[ "t.Literal['all', 'closed', 'hidden', 'none', 'open']", str ], ..., ], ], ] ] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, frequency: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, headers: t.Optional[ t.Mapping[str, t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]]] ] = None, human: t.Optional[bool] = None, ignore_throttled: t.Optional[bool] = None, ignore_unavailable: t.Optional[bool] = None, indexes: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, indices: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, indices_options: t.Optional[t.Mapping[str, t.Any]] = None, job_id: t.Optional[str] = None, max_empty_searches: t.Optional[int] = None, pretty: t.Optional[bool] = None, query: t.Optional[t.Mapping[str, t.Any]] = None, query_delay: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, runtime_mappings: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, script_fields: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, scroll_size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Instantiates a datafeed. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-put-datafeed.html>`_ :param datafeed_id: A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param aggregations: If set, the datafeed performs aggregation searches. Support for aggregations is limited and should be used only with low cardinality data. :param allow_no_indices: If true, wildcard indices expressions that resolve into no concrete indices are ignored. This includes the `_all` string or when no indices are specified. :param chunking_config: Datafeeds might be required to search over long time periods, for several months or years. This search is split into time chunks in order to ensure the load on Elasticsearch is managed. Chunking configuration controls how the size of these time chunks are calculated; it is an advanced configuration option. :param delayed_data_check_config: Specifies whether the datafeed checks for missing data and the size of the window. The datafeed can optionally search over indices that have already been read in an effort to determine whether any data has subsequently been added to the index. If missing data is found, it is a good indication that the `query_delay` is set too low and the data is being indexed after the datafeed has passed that moment in time. This check runs only on real-time datafeeds. :param expand_wildcards: Type of index that wildcard patterns can match. If the request can target data streams, this argument determines whether wildcard expressions match hidden data streams. Supports comma-separated values. :param frequency: The interval at which scheduled queries are made while the datafeed runs in real time. The default value is either the bucket span for short bucket spans, or, for longer bucket spans, a sensible fraction of the bucket span. When `frequency` is shorter than the bucket span, interim results for the last (partial) bucket are written then eventually overwritten by the full bucket results. If the datafeed uses aggregations, this value must be divisible by the interval of the date histogram aggregation. :param headers: :param ignore_throttled: If true, concrete, expanded, or aliased indices are ignored when frozen. :param ignore_unavailable: If true, unavailable indices (missing or closed) are ignored. :param indexes: An array of index names. Wildcards are supported. If any of the indices are in remote clusters, the machine learning nodes must have the `remote_cluster_client` role. :param indices: An array of index names. Wildcards are supported. If any of the indices are in remote clusters, the machine learning nodes must have the `remote_cluster_client` role. :param indices_options: Specifies index expansion options that are used during search :param job_id: Identifier for the anomaly detection job. :param max_empty_searches: If a real-time datafeed has never seen any data (including during any initial training period), it automatically stops and closes the associated job after this many real-time searches return no documents. In other words, it stops after `frequency` times `max_empty_searches` of real-time operation. If not set, a datafeed with no end time that sees no data remains started until it is explicitly stopped. By default, it is not set. :param query: The Elasticsearch query domain-specific language (DSL). This value corresponds to the query object in an Elasticsearch search POST body. All the options that are supported by Elasticsearch can be used, as this object is passed verbatim to Elasticsearch. :param query_delay: The number of seconds behind real time that data is queried. For example, if data from 10:04 a.m. might not be searchable in Elasticsearch until 10:06 a.m., set this property to 120 seconds. The default value is randomly selected between `60s` and `120s`. This randomness improves the query performance when there are multiple jobs running on the same node. :param runtime_mappings: Specifies runtime fields for the datafeed search. :param script_fields: Specifies scripts that evaluate custom expressions and returns script fields to the datafeed. The detector configuration objects in a job can contain functions that use these script fields. :param scroll_size: The size parameter that is used in Elasticsearch searches when the datafeed does not use aggregations. The maximum value is the value of `index.max_result_window`, which is 10,000 by default. """ if datafeed_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'datafeed_id'") __path = f"/_ml/datafeeds/{_quote(datafeed_id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if aggregations is not None: __body["aggregations"] = aggregations if allow_no_indices is not None: __query["allow_no_indices"] = allow_no_indices if chunking_config is not None: __body["chunking_config"] = chunking_config if delayed_data_check_config is not None: __body["delayed_data_check_config"] = delayed_data_check_config if error_trace is not None: __query["error_trace"] = error_trace if expand_wildcards is not None: __query["expand_wildcards"] = expand_wildcards if filter_path is not None: __query["filter_path"] = filter_path if frequency is not None: __body["frequency"] = frequency if headers is not None: __body["headers"] = headers if human is not None: __query["human"] = human if ignore_throttled is not None: __query["ignore_throttled"] = ignore_throttled if ignore_unavailable is not None: __query["ignore_unavailable"] = ignore_unavailable if indexes is not None: __body["indexes"] = indexes if indices is not None: __body["indices"] = indices if indices_options is not None: __body["indices_options"] = indices_options if job_id is not None: __body["job_id"] = job_id if max_empty_searches is not None: __body["max_empty_searches"] = max_empty_searches if pretty is not None: __query["pretty"] = pretty if query is not None: __body["query"] = query if query_delay is not None: __body["query_delay"] = query_delay if runtime_mappings is not None: __body["runtime_mappings"] = runtime_mappings if script_fields is not None: __body["script_fields"] = script_fields if scroll_size is not None: __body["scroll_size"] = scroll_size __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def put_filter( self, *, filter_id: str, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, items: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Instantiates a filter. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-put-filter.html>`_ :param filter_id: A string that uniquely identifies a filter. :param description: A description of the filter. :param items: The items of the filter. A wildcard `*` can be used at the beginning or the end of an item. Up to 10000 items are allowed in each filter. """ if filter_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'filter_id'") __path = f"/_ml/filters/{_quote(filter_id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if items is not None: __body["items"] = items if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def put_job( self, *, job_id: str, analysis_config: t.Mapping[str, t.Any], data_description: t.Mapping[str, t.Any], allow_lazy_open: t.Optional[bool] = None, analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None, background_persist_interval: t.Optional[ t.Union["t.Literal[-1]", "t.Literal[0]", str] ] = None, custom_settings: t.Optional[t.Any] = None, daily_model_snapshot_retention_after_days: t.Optional[int] = None, datafeed_config: t.Optional[t.Mapping[str, t.Any]] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, groups: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, human: t.Optional[bool] = None, model_plot_config: t.Optional[t.Mapping[str, t.Any]] = None, model_snapshot_retention_days: t.Optional[int] = None, pretty: t.Optional[bool] = None, renormalization_window_days: t.Optional[int] = None, results_index_name: t.Optional[str] = None, results_retention_days: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Instantiates an anomaly detection job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-put-job.html>`_ :param job_id: The identifier for the anomaly detection job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param analysis_config: Specifies how to analyze the data. After you create a job, you cannot change the analysis configuration; all the properties are informational. :param data_description: Defines the format of the input data when you send data to the job by using the post data API. Note that when configure a datafeed, these properties are automatically set. When data is received via the post data API, it is not stored in Elasticsearch. Only the results for anomaly detection are retained. :param allow_lazy_open: Advanced configuration option. Specifies whether this job can open when there is insufficient machine learning node capacity for it to be immediately assigned to a node. By default, if a machine learning node with capacity to run the job cannot immediately be found, the open anomaly detection jobs API returns an error. However, this is also subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. If this option is set to true, the open anomaly detection jobs API does not return an error and the job waits in the opening state until sufficient machine learning node capacity is available. :param analysis_limits: Limits can be applied for the resources required to hold the mathematical models in memory. These limits are approximate and can be set per job. They do not control the memory used by other processes, for example the Elasticsearch Java processes. :param background_persist_interval: Advanced configuration option. The time between each periodic persistence of the model. The default value is a randomized value between 3 to 4 hours, which avoids all jobs persisting at exactly the same time. The smallest allowed value is 1 hour. For very large models (several GB), persistence could take 10-20 minutes, so do not set the `background_persist_interval` value too low. :param custom_settings: Advanced configuration option. Contains custom meta data about the job. :param daily_model_snapshot_retention_after_days: Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies a period of time (in days) after which only the first snapshot per day is retained. This period is relative to the timestamp of the most recent snapshot for this job. Valid values range from 0 to `model_snapshot_retention_days`. :param datafeed_config: Defines a datafeed for the anomaly detection job. If Elasticsearch security features are enabled, your datafeed remembers which roles the user who created it had at the time of creation and runs the query using those same roles. If you provide secondary authorization headers, those credentials are used instead. :param description: A description of the job. :param groups: A list of job groups. A job can belong to no groups or many. :param model_plot_config: This advanced configuration option stores model information along with the results. It provides a more detailed view into anomaly detection. If you enable model plot it can add considerable overhead to the performance of the system; it is not feasible for jobs with many entities. Model plot provides a simplified and indicative view of the model and its bounds. It does not display complex features such as multivariate correlations or multimodal data. As such, anomalies may occasionally be reported which cannot be seen in the model plot. Model plot config can be configured when the job is created or updated later. It must be disabled if performance issues are experienced. :param model_snapshot_retention_days: Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies the maximum period of time (in days) that snapshots are retained. This period is relative to the timestamp of the most recent snapshot for this job. By default, snapshots ten days older than the newest snapshot are deleted. :param renormalization_window_days: Advanced configuration option. The period over which adjustments to the score are applied, as new data is seen. The default value is the longer of 30 days or 100 bucket spans. :param results_index_name: A text string that affects the name of the machine learning results index. By default, the job generates an index named `.ml-anomalies-shared`. :param results_retention_days: Advanced configuration option. The period of time (in days) that results are retained. Age is calculated relative to the timestamp of the latest bucket result. If this property has a non-null value, once per day at 00:30 (server time), results that are the specified number of days older than the latest bucket result are deleted from Elasticsearch. The default value is null, which means all results are retained. Annotations generated by the system also count as results for retention purposes; they are deleted after the same number of days as results. Annotations added by users are retained forever. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if analysis_config is None: raise ValueError("Empty value passed for parameter 'analysis_config'") if data_description is None: raise ValueError("Empty value passed for parameter 'data_description'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if analysis_config is not None: __body["analysis_config"] = analysis_config if data_description is not None: __body["data_description"] = data_description if allow_lazy_open is not None: __body["allow_lazy_open"] = allow_lazy_open if analysis_limits is not None: __body["analysis_limits"] = analysis_limits if background_persist_interval is not None: __body["background_persist_interval"] = background_persist_interval if custom_settings is not None: __body["custom_settings"] = custom_settings if daily_model_snapshot_retention_after_days is not None: __body[ "daily_model_snapshot_retention_after_days" ] = daily_model_snapshot_retention_after_days if datafeed_config is not None: __body["datafeed_config"] = datafeed_config if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if groups is not None: __body["groups"] = groups if human is not None: __query["human"] = human if model_plot_config is not None: __body["model_plot_config"] = model_plot_config if model_snapshot_retention_days is not None: __body["model_snapshot_retention_days"] = model_snapshot_retention_days if pretty is not None: __query["pretty"] = pretty if renormalization_window_days is not None: __body["renormalization_window_days"] = renormalization_window_days if results_index_name is not None: __body["results_index_name"] = results_index_name if results_retention_days is not None: __body["results_retention_days"] = results_retention_days __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def put_trained_model( self, *, model_id: str, inference_config: t.Mapping[str, t.Any], input: t.Mapping[str, t.Any], compressed_definition: t.Optional[str] = None, defer_definition_decompression: t.Optional[bool] = None, definition: t.Optional[t.Mapping[str, t.Any]] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, metadata: t.Optional[t.Any] = None, model_size_bytes: t.Optional[int] = None, model_type: t.Optional[ t.Union["t.Literal['lang_ident', 'pytorch', 'tree_ensemble']", str] ] = None, pretty: t.Optional[bool] = None, tags: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, ) -> ObjectApiResponse[t.Any]: """ Creates an inference trained model. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/put-trained-models.html>`_ :param model_id: The unique identifier of the trained model. :param inference_config: The default configuration for inference. This can be either a regression or classification configuration. It must match the underlying definition.trained_model's target_type. :param input: The input field names for the model definition. :param compressed_definition: The compressed (GZipped and Base64 encoded) inference definition of the model. If compressed_definition is specified, then definition cannot be specified. :param defer_definition_decompression: If set to `true` and a `compressed_definition` is provided, the request defers definition decompression and skips relevant validations. :param definition: The inference definition for the model. If definition is specified, then compressed_definition cannot be specified. :param description: A human-readable description of the inference trained model. :param metadata: An object map that contains metadata about the model. :param model_size_bytes: The estimated memory usage in bytes to keep the trained model in memory. This property is supported only if defer_definition_decompression is true or the model definition is not supplied. :param model_type: The model type. :param tags: An array of tags to organize the model. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if inference_config is None: raise ValueError("Empty value passed for parameter 'inference_config'") if input is None: raise ValueError("Empty value passed for parameter 'input'") __path = f"/_ml/trained_models/{_quote(model_id)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if inference_config is not None: __body["inference_config"] = inference_config if input is not None: __body["input"] = input if compressed_definition is not None: __body["compressed_definition"] = compressed_definition if defer_definition_decompression is not None: __query["defer_definition_decompression"] = defer_definition_decompression if definition is not None: __body["definition"] = definition if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if metadata is not None: __body["metadata"] = metadata if model_size_bytes is not None: __body["model_size_bytes"] = model_size_bytes if model_type is not None: __body["model_type"] = model_type if pretty is not None: __query["pretty"] = pretty if tags is not None: __body["tags"] = tags __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def put_trained_model_alias( self, *, model_id: str, model_alias: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, reassign: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Creates a new model alias (or reassigns an existing one) to refer to the trained model `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/put-trained-models-aliases.html>`_ :param model_id: The identifier for the trained model that the alias refers to. :param model_alias: The alias to create or update. This value cannot end in numbers. :param reassign: Specifies whether the alias gets reassigned to the specified trained model if it is already assigned to a different model. If the alias is already assigned and this parameter is false, the API returns an error. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if model_alias in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_alias'") __path = f"/_ml/trained_models/{_quote(model_id)}/model_aliases/{_quote(model_alias)}" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if reassign is not None: __query["reassign"] = reassign __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def put_trained_model_definition_part( self, *, model_id: str, part: int, definition: str, total_definition_length: int, total_parts: int, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Creates part of a trained model definition `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/put-trained-model-definition-part.html>`_ :param model_id: The unique identifier of the trained model. :param part: The definition part number. When the definition is loaded for inference the definition parts are streamed in the order of their part number. The first part must be `0` and the final part must be `total_parts - 1`. :param definition: The definition part for the model. Must be a base64 encoded string. :param total_definition_length: The total uncompressed definition length in bytes. Not base64 encoded. :param total_parts: The total number of parts that will be uploaded. Must be greater than 0. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if part in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'part'") if definition is None: raise ValueError("Empty value passed for parameter 'definition'") if total_definition_length is None: raise ValueError( "Empty value passed for parameter 'total_definition_length'" ) if total_parts is None: raise ValueError("Empty value passed for parameter 'total_parts'") __path = f"/_ml/trained_models/{_quote(model_id)}/definition/{_quote(part)}" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if definition is not None: __body["definition"] = definition if total_definition_length is not None: __body["total_definition_length"] = total_definition_length if total_parts is not None: __body["total_parts"] = total_parts if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def put_trained_model_vocabulary( self, *, model_id: str, vocabulary: t.Union[t.List[str], t.Tuple[str, ...]], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, merges: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Creates a trained model vocabulary `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/put-trained-model-vocabulary.html>`_ :param model_id: The unique identifier of the trained model. :param vocabulary: The model vocabulary, which must not be empty. :param merges: The optional model merges if required by the tokenizer. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") if vocabulary is None: raise ValueError("Empty value passed for parameter 'vocabulary'") __path = f"/_ml/trained_models/{_quote(model_id)}/vocabulary" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if vocabulary is not None: __body["vocabulary"] = vocabulary if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if merges is not None: __body["merges"] = merges if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "PUT", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def reset_job( self, *, job_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, wait_for_completion: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Resets an existing anomaly detection job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-reset-job.html>`_ :param job_id: The ID of the job to reset. :param wait_for_completion: Should this request wait until the operation has completed before returning. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_reset" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if wait_for_completion is not None: __query["wait_for_completion"] = wait_for_completion __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def revert_model_snapshot( self, *, job_id: str, snapshot_id: str, delete_intervening_results: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Reverts to a specific snapshot. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-revert-snapshot.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: You can specify `empty` as the <snapshot_id>. Reverting to the empty snapshot means the anomaly detection job starts learning a new model from scratch when it is started. :param delete_intervening_results: Refer to the description for the `delete_intervening_results` query parameter. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if snapshot_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'snapshot_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}/_revert" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if delete_intervening_results is not None: __body["delete_intervening_results"] = delete_intervening_results if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def set_upgrade_mode( self, *, enabled: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Sets a cluster wide upgrade_mode setting that prepares machine learning indices for an upgrade. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-set-upgrade-mode.html>`_ :param enabled: When `true`, it enables `upgrade_mode` which temporarily halts all job and datafeed tasks and prohibits new job and datafeed tasks from starting. :param timeout: The time to wait for the request to be completed. """ __path = "/_ml/set_upgrade_mode" __query: t.Dict[str, t.Any] = {} if enabled is not None: __query["enabled"] = enabled if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters() def start_data_frame_analytics( self, *, id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Starts a data frame analytics job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/start-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param timeout: Controls the amount of time to wait until the data frame analytics job starts. """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'id'") __path = f"/_ml/data_frame/analytics/{_quote(id)}/_start" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def start_datafeed( self, *, datafeed_id: str, end: t.Optional[t.Union[str, t.Any]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, start: t.Optional[t.Union[str, t.Any]] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Starts one or more datafeeds. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-start-datafeed.html>`_ :param datafeed_id: A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param end: Refer to the description for the `end` query parameter. :param start: Refer to the description for the `start` query parameter. :param timeout: Refer to the description for the `timeout` query parameter. """ if datafeed_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'datafeed_id'") __path = f"/_ml/datafeeds/{_quote(datafeed_id)}/_start" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if end is not None: __body["end"] = end if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if start is not None: __body["start"] = start if timeout is not None: __body["timeout"] = timeout if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def start_trained_model_deployment( self, *, model_id: str, cache_size: t.Optional[t.Union[int, str]] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, number_of_allocations: t.Optional[int] = None, pretty: t.Optional[bool] = None, queue_capacity: t.Optional[int] = None, threads_per_allocation: t.Optional[int] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, wait_for: t.Optional[ t.Union["t.Literal['fully_allocated', 'started', 'starting']", str] ] = None, ) -> ObjectApiResponse[t.Any]: """ Start a trained model deployment. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/start-trained-model-deployment.html>`_ :param model_id: The unique identifier of the trained model. Currently, only PyTorch models are supported. :param cache_size: The inference cache size (in memory outside the JVM heap) per node for the model. The default value is the same size as the `model_size_bytes`. To disable the cache, `0b` can be provided. :param number_of_allocations: The number of model allocations on each node where the model is deployed. All allocations on a node share the same copy of the model in memory but use a separate set of threads to evaluate the model. Increasing this value generally increases the throughput. If this setting is greater than the number of hardware threads it will automatically be changed to a value less than the number of hardware threads. :param queue_capacity: Specifies the number of inference requests that are allowed in the queue. After the number of requests exceeds this value, new requests are rejected with a 429 error. :param threads_per_allocation: Sets the number of threads used by each model allocation during inference. This generally increases the inference speed. The inference process is a compute-bound process; any number greater than the number of available hardware threads on the machine does not increase the inference speed. If this setting is greater than the number of hardware threads it will automatically be changed to a value less than the number of hardware threads. :param timeout: Specifies the amount of time to wait for the model to deploy. :param wait_for: Specifies the allocation status to wait for before returning. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") __path = f"/_ml/trained_models/{_quote(model_id)}/deployment/_start" __query: t.Dict[str, t.Any] = {} if cache_size is not None: __query["cache_size"] = cache_size if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if number_of_allocations is not None: __query["number_of_allocations"] = number_of_allocations if pretty is not None: __query["pretty"] = pretty if queue_capacity is not None: __query["queue_capacity"] = queue_capacity if threads_per_allocation is not None: __query["threads_per_allocation"] = threads_per_allocation if timeout is not None: __query["timeout"] = timeout if wait_for is not None: __query["wait_for"] = wait_for __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters() def stop_data_frame_analytics( self, *, id: str, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Stops one or more data frame analytics jobs. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/stop-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param allow_no_match: Specifies what to do when the request: 1. Contains wildcard expressions and there are no data frame analytics jobs that match. 2. Contains the _all string or no identifiers and there are no matches. 3. Contains wildcard expressions and there are only partial matches. The default value is true, which returns an empty data_frame_analytics array when there are no matches and the subset of results when there are partial matches. If this parameter is false, the request returns a 404 status code when there are no matches or only partial matches. :param force: If true, the data frame analytics job is stopped forcefully. :param timeout: Controls the amount of time to wait until the data frame analytics job stops. Defaults to 20 seconds. """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'id'") __path = f"/_ml/data_frame/analytics/{_quote(id)}/_stop" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def stop_datafeed( self, *, datafeed_id: str, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, ) -> ObjectApiResponse[t.Any]: """ Stops one or more datafeeds. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-stop-datafeed.html>`_ :param datafeed_id: Identifier for the datafeed. You can stop multiple datafeeds in a single API request by using a comma-separated list of datafeeds or a wildcard expression. You can close all datafeeds by using `_all` or by specifying `*` as the identifier. :param allow_no_match: Refer to the description for the `allow_no_match` query parameter. :param force: Refer to the description for the `force` query parameter. :param timeout: Refer to the description for the `timeout` query parameter. """ if datafeed_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'datafeed_id'") __path = f"/_ml/datafeeds/{_quote(datafeed_id)}/_stop" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __body["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __body["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __body["timeout"] = timeout if not __body: __body = None # type: ignore[assignment] __headers = {"accept": "application/json"} if __body is not None: __headers["content-type"] = "application/json" return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def stop_trained_model_deployment( self, *, model_id: str, allow_no_match: t.Optional[bool] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, force: t.Optional[bool] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Stop a trained model deployment. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/stop-trained-model-deployment.html>`_ :param model_id: The unique identifier of the trained model. :param allow_no_match: Specifies what to do when the request: contains wildcard expressions and there are no deployments that match; contains the `_all` string or no identifiers and there are no matches; or contains wildcard expressions and there are only partial matches. By default, it returns an empty array when there are no matches and the subset of results when there are partial matches. If `false`, the request returns a 404 status code when there are no matches or only partial matches. :param force: Forcefully stops the deployment, even if it is used by ingest pipelines. You can't use these pipelines until you restart the model deployment. """ if model_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'model_id'") __path = f"/_ml/trained_models/{_quote(model_id)}/deployment/_stop" __query: t.Dict[str, t.Any] = {} if allow_no_match is not None: __query["allow_no_match"] = allow_no_match if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if force is not None: __query["force"] = force if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def update_data_frame_analytics( self, *, id: str, allow_lazy_start: t.Optional[bool] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, max_num_threads: t.Optional[int] = None, model_memory_limit: t.Optional[str] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Updates certain properties of a data frame analytics job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/update-dfanalytics.html>`_ :param id: Identifier for the data frame analytics job. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param allow_lazy_start: Specifies whether this job can start when there is insufficient machine learning node capacity for it to be immediately assigned to a node. :param description: A description of the job. :param max_num_threads: The maximum number of threads to be used by the analysis. Using more threads may decrease the time necessary to complete the analysis at the cost of using more CPU. Note that the process may use additional threads for operational functionality other than the analysis itself. :param model_memory_limit: The approximate maximum amount of memory resources that are permitted for analytical processing. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create data frame analytics jobs that have `model_memory_limit` values greater than that setting. """ if id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'id'") __path = f"/_ml/data_frame/analytics/{_quote(id)}/_update" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_lazy_start is not None: __body["allow_lazy_start"] = allow_lazy_start if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if max_num_threads is not None: __body["max_num_threads"] = max_num_threads if model_memory_limit is not None: __body["model_memory_limit"] = model_memory_limit if pretty is not None: __query["pretty"] = pretty __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def update_datafeed( self, *, datafeed_id: str, aggregations: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, allow_no_indices: t.Optional[bool] = None, chunking_config: t.Optional[t.Mapping[str, t.Any]] = None, delayed_data_check_config: t.Optional[t.Mapping[str, t.Any]] = None, error_trace: t.Optional[bool] = None, expand_wildcards: t.Optional[ t.Union[ t.Union["t.Literal['all', 'closed', 'hidden', 'none', 'open']", str], t.Union[ t.List[ t.Union[ "t.Literal['all', 'closed', 'hidden', 'none', 'open']", str ] ], t.Tuple[ t.Union[ "t.Literal['all', 'closed', 'hidden', 'none', 'open']", str ], ..., ], ], ] ] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, frequency: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, human: t.Optional[bool] = None, ignore_throttled: t.Optional[bool] = None, ignore_unavailable: t.Optional[bool] = None, indexes: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, indices: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, indices_options: t.Optional[t.Mapping[str, t.Any]] = None, max_empty_searches: t.Optional[int] = None, pretty: t.Optional[bool] = None, query: t.Optional[t.Mapping[str, t.Any]] = None, query_delay: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, runtime_mappings: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, script_fields: t.Optional[t.Mapping[str, t.Mapping[str, t.Any]]] = None, scroll_size: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Updates certain properties of a datafeed. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-update-datafeed.html>`_ :param datafeed_id: A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters. :param aggregations: If set, the datafeed performs aggregation searches. Support for aggregations is limited and should be used only with low cardinality data. :param allow_no_indices: If `true`, wildcard indices expressions that resolve into no concrete indices are ignored. This includes the `_all` string or when no indices are specified. :param chunking_config: Datafeeds might search over long time periods, for several months or years. This search is split into time chunks in order to ensure the load on Elasticsearch is managed. Chunking configuration controls how the size of these time chunks are calculated; it is an advanced configuration option. :param delayed_data_check_config: Specifies whether the datafeed checks for missing data and the size of the window. The datafeed can optionally search over indices that have already been read in an effort to determine whether any data has subsequently been added to the index. If missing data is found, it is a good indication that the `query_delay` is set too low and the data is being indexed after the datafeed has passed that moment in time. This check runs only on real-time datafeeds. :param expand_wildcards: Type of index that wildcard patterns can match. If the request can target data streams, this argument determines whether wildcard expressions match hidden data streams. Supports comma-separated values. Valid values are: * `all`: Match any data stream or index, including hidden ones. * `closed`: Match closed, non-hidden indices. Also matches any non-hidden data stream. Data streams cannot be closed. * `hidden`: Match hidden data streams and hidden indices. Must be combined with `open`, `closed`, or both. * `none`: Wildcard patterns are not accepted. * `open`: Match open, non-hidden indices. Also matches any non-hidden data stream. :param frequency: The interval at which scheduled queries are made while the datafeed runs in real time. The default value is either the bucket span for short bucket spans, or, for longer bucket spans, a sensible fraction of the bucket span. When `frequency` is shorter than the bucket span, interim results for the last (partial) bucket are written then eventually overwritten by the full bucket results. If the datafeed uses aggregations, this value must be divisible by the interval of the date histogram aggregation. :param ignore_throttled: If `true`, concrete, expanded or aliased indices are ignored when frozen. :param ignore_unavailable: If `true`, unavailable indices (missing or closed) are ignored. :param indexes: An array of index names. Wildcards are supported. If any of the indices are in remote clusters, the machine learning nodes must have the `remote_cluster_client` role. :param indices: An array of index names. Wildcards are supported. If any of the indices are in remote clusters, the machine learning nodes must have the `remote_cluster_client` role. :param indices_options: Specifies index expansion options that are used during search. :param max_empty_searches: If a real-time datafeed has never seen any data (including during any initial training period), it automatically stops and closes the associated job after this many real-time searches return no documents. In other words, it stops after `frequency` times `max_empty_searches` of real-time operation. If not set, a datafeed with no end time that sees no data remains started until it is explicitly stopped. By default, it is not set. :param query: The Elasticsearch query domain-specific language (DSL). This value corresponds to the query object in an Elasticsearch search POST body. All the options that are supported by Elasticsearch can be used, as this object is passed verbatim to Elasticsearch. Note that if you change the query, the analyzed data is also changed. Therefore, the time required to learn might be long and the understandability of the results is unpredictable. If you want to make significant changes to the source data, it is recommended that you clone the job and datafeed and make the amendments in the clone. Let both run in parallel and close one when you are satisfied with the results of the job. :param query_delay: The number of seconds behind real time that data is queried. For example, if data from 10:04 a.m. might not be searchable in Elasticsearch until 10:06 a.m., set this property to 120 seconds. The default value is randomly selected between `60s` and `120s`. This randomness improves the query performance when there are multiple jobs running on the same node. :param runtime_mappings: Specifies runtime fields for the datafeed search. :param script_fields: Specifies scripts that evaluate custom expressions and returns script fields to the datafeed. The detector configuration objects in a job can contain functions that use these script fields. :param scroll_size: The size parameter that is used in Elasticsearch searches when the datafeed does not use aggregations. The maximum value is the value of `index.max_result_window`. """ if datafeed_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'datafeed_id'") __path = f"/_ml/datafeeds/{_quote(datafeed_id)}/_update" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if aggregations is not None: __body["aggregations"] = aggregations if allow_no_indices is not None: __query["allow_no_indices"] = allow_no_indices if chunking_config is not None: __body["chunking_config"] = chunking_config if delayed_data_check_config is not None: __body["delayed_data_check_config"] = delayed_data_check_config if error_trace is not None: __query["error_trace"] = error_trace if expand_wildcards is not None: __query["expand_wildcards"] = expand_wildcards if filter_path is not None: __query["filter_path"] = filter_path if frequency is not None: __body["frequency"] = frequency if human is not None: __query["human"] = human if ignore_throttled is not None: __query["ignore_throttled"] = ignore_throttled if ignore_unavailable is not None: __query["ignore_unavailable"] = ignore_unavailable if indexes is not None: __body["indexes"] = indexes if indices is not None: __body["indices"] = indices if indices_options is not None: __body["indices_options"] = indices_options if max_empty_searches is not None: __body["max_empty_searches"] = max_empty_searches if pretty is not None: __query["pretty"] = pretty if query is not None: __body["query"] = query if query_delay is not None: __body["query_delay"] = query_delay if runtime_mappings is not None: __body["runtime_mappings"] = runtime_mappings if script_fields is not None: __body["script_fields"] = script_fields if scroll_size is not None: __body["scroll_size"] = scroll_size __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def update_filter( self, *, filter_id: str, add_items: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, remove_items: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, ) -> ObjectApiResponse[t.Any]: """ Updates the description of a filter, adds items, or removes items. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-update-filter.html>`_ :param filter_id: A string that uniquely identifies a filter. :param add_items: The items to add to the filter. :param description: A description for the filter. :param remove_items: The items to remove from the filter. """ if filter_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'filter_id'") __path = f"/_ml/filters/{_quote(filter_id)}/_update" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if add_items is not None: __body["add_items"] = add_items if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if remove_items is not None: __body["remove_items"] = remove_items __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def update_job( self, *, job_id: str, allow_lazy_open: t.Optional[bool] = None, analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None, background_persist_interval: t.Optional[ t.Union["t.Literal[-1]", "t.Literal[0]", str] ] = None, categorization_filters: t.Optional[ t.Union[t.List[str], t.Tuple[str, ...]] ] = None, custom_settings: t.Optional[t.Mapping[str, t.Any]] = None, daily_model_snapshot_retention_after_days: t.Optional[int] = None, description: t.Optional[str] = None, detectors: t.Optional[ t.Union[t.List[t.Mapping[str, t.Any]], t.Tuple[t.Mapping[str, t.Any], ...]] ] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, groups: t.Optional[t.Union[t.List[str], t.Tuple[str, ...]]] = None, human: t.Optional[bool] = None, model_plot_config: t.Optional[t.Mapping[str, t.Any]] = None, model_snapshot_retention_days: t.Optional[int] = None, per_partition_categorization: t.Optional[t.Mapping[str, t.Any]] = None, pretty: t.Optional[bool] = None, renormalization_window_days: t.Optional[int] = None, results_retention_days: t.Optional[int] = None, ) -> ObjectApiResponse[t.Any]: """ Updates certain properties of an anomaly detection job. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-update-job.html>`_ :param job_id: Identifier for the job. :param allow_lazy_open: Advanced configuration option. Specifies whether this job can open when there is insufficient machine learning node capacity for it to be immediately assigned to a node. If `false` and a machine learning node with capacity to run the job cannot immediately be found, the open anomaly detection jobs API returns an error. However, this is also subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting. If this option is set to `true`, the open anomaly detection jobs API does not return an error and the job waits in the opening state until sufficient machine learning node capacity is available. :param analysis_limits: :param background_persist_interval: Advanced configuration option. The time between each periodic persistence of the model. The default value is a randomized value between 3 to 4 hours, which avoids all jobs persisting at exactly the same time. The smallest allowed value is 1 hour. For very large models (several GB), persistence could take 10-20 minutes, so do not set the value too low. If the job is open when you make the update, you must stop the datafeed, close the job, then reopen the job and restart the datafeed for the changes to take effect. :param categorization_filters: :param custom_settings: Advanced configuration option. Contains custom meta data about the job. For example, it can contain custom URL information as shown in Adding custom URLs to machine learning results. :param daily_model_snapshot_retention_after_days: Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies a period of time (in days) after which only the first snapshot per day is retained. This period is relative to the timestamp of the most recent snapshot for this job. Valid values range from 0 to `model_snapshot_retention_days`. For jobs created before version 7.8.0, the default value matches `model_snapshot_retention_days`. :param description: A description of the job. :param detectors: An array of detector update objects. :param groups: A list of job groups. A job can belong to no groups or many. :param model_plot_config: :param model_snapshot_retention_days: Advanced configuration option, which affects the automatic removal of old model snapshots for this job. It specifies the maximum period of time (in days) that snapshots are retained. This period is relative to the timestamp of the most recent snapshot for this job. :param per_partition_categorization: Settings related to how categorization interacts with partition fields. :param renormalization_window_days: Advanced configuration option. The period over which adjustments to the score are applied, as new data is seen. :param results_retention_days: Advanced configuration option. The period of time (in days) that results are retained. Age is calculated relative to the timestamp of the latest bucket result. If this property has a non-null value, once per day at 00:30 (server time), results that are the specified number of days older than the latest bucket result are deleted from Elasticsearch. The default value is null, which means all results are retained. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/_update" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if allow_lazy_open is not None: __body["allow_lazy_open"] = allow_lazy_open if analysis_limits is not None: __body["analysis_limits"] = analysis_limits if background_persist_interval is not None: __body["background_persist_interval"] = background_persist_interval if categorization_filters is not None: __body["categorization_filters"] = categorization_filters if custom_settings is not None: __body["custom_settings"] = custom_settings if daily_model_snapshot_retention_after_days is not None: __body[ "daily_model_snapshot_retention_after_days" ] = daily_model_snapshot_retention_after_days if description is not None: __body["description"] = description if detectors is not None: __body["detectors"] = detectors if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if groups is not None: __body["groups"] = groups if human is not None: __query["human"] = human if model_plot_config is not None: __body["model_plot_config"] = model_plot_config if model_snapshot_retention_days is not None: __body["model_snapshot_retention_days"] = model_snapshot_retention_days if per_partition_categorization is not None: __body["per_partition_categorization"] = per_partition_categorization if pretty is not None: __query["pretty"] = pretty if renormalization_window_days is not None: __body["renormalization_window_days"] = renormalization_window_days if results_retention_days is not None: __body["results_retention_days"] = results_retention_days __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_fields=True, ) def update_model_snapshot( self, *, job_id: str, snapshot_id: str, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, retain: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Updates certain properties of a snapshot. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-update-snapshot.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: Identifier for the model snapshot. :param description: A description of the model snapshot. :param retain: If `true`, this snapshot will not be deleted during automatic cleanup of snapshots older than `model_snapshot_retention_days`. However, this snapshot will be deleted when the job is deleted. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if snapshot_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'snapshot_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}/_update" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if retain is not None: __body["retain"] = retain __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters() def upgrade_job_snapshot( self, *, job_id: str, snapshot_id: str, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, timeout: t.Optional[t.Union["t.Literal[-1]", "t.Literal[0]", str]] = None, wait_for_completion: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Upgrades a given job snapshot to the current major version. `<https://www.elastic.co/guide/en/elasticsearch/reference/8.6/ml-upgrade-job-model-snapshot.html>`_ :param job_id: Identifier for the anomaly detection job. :param snapshot_id: A numerical character string that uniquely identifies the model snapshot. :param timeout: Controls the time to wait for the request to complete. :param wait_for_completion: When true, the API wonβt respond until the upgrade is complete. Otherwise, it responds as soon as the upgrade task is assigned to a node. """ if job_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'job_id'") if snapshot_id in SKIP_IN_PATH: raise ValueError("Empty value passed for parameter 'snapshot_id'") __path = f"/_ml/anomaly_detectors/{_quote(job_id)}/model_snapshots/{_quote(snapshot_id)}/_upgrade" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty if timeout is not None: __query["timeout"] = timeout if wait_for_completion is not None: __query["wait_for_completion"] = wait_for_completion __headers = {"accept": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers ) @_rewrite_parameters( body_fields=True, ) def validate( self, *, analysis_config: t.Optional[t.Mapping[str, t.Any]] = None, analysis_limits: t.Optional[t.Mapping[str, t.Any]] = None, data_description: t.Optional[t.Mapping[str, t.Any]] = None, description: t.Optional[str] = None, error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, job_id: t.Optional[str] = None, model_plot: t.Optional[t.Mapping[str, t.Any]] = None, model_snapshot_id: t.Optional[str] = None, model_snapshot_retention_days: t.Optional[int] = None, pretty: t.Optional[bool] = None, results_index_name: t.Optional[str] = None, ) -> ObjectApiResponse[t.Any]: """ Validates an anomaly detection job. `<https://www.elastic.co/guide/en/machine-learning/8.6/ml-jobs.html>`_ :param analysis_config: :param analysis_limits: :param data_description: :param description: :param job_id: :param model_plot: :param model_snapshot_id: :param model_snapshot_retention_days: :param results_index_name: """ __path = "/_ml/anomaly_detectors/_validate" __body: t.Dict[str, t.Any] = {} __query: t.Dict[str, t.Any] = {} if analysis_config is not None: __body["analysis_config"] = analysis_config if analysis_limits is not None: __body["analysis_limits"] = analysis_limits if data_description is not None: __body["data_description"] = data_description if description is not None: __body["description"] = description if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if job_id is not None: __body["job_id"] = job_id if model_plot is not None: __body["model_plot"] = model_plot if model_snapshot_id is not None: __body["model_snapshot_id"] = model_snapshot_id if model_snapshot_retention_days is not None: __body["model_snapshot_retention_days"] = model_snapshot_retention_days if pretty is not None: __query["pretty"] = pretty if results_index_name is not None: __body["results_index_name"] = results_index_name __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body ) @_rewrite_parameters( body_name="detector", ) def validate_detector( self, *, detector: t.Mapping[str, t.Any], error_trace: t.Optional[bool] = None, filter_path: t.Optional[ t.Union[str, t.Union[t.List[str], t.Tuple[str, ...]]] ] = None, human: t.Optional[bool] = None, pretty: t.Optional[bool] = None, ) -> ObjectApiResponse[t.Any]: """ Validates an anomaly detection detector. `<https://www.elastic.co/guide/en/machine-learning/8.6/ml-jobs.html>`_ :param detector: """ if detector is None: raise ValueError("Empty value passed for parameter 'detector'") __path = "/_ml/anomaly_detectors/_validate/detector" __query: t.Dict[str, t.Any] = {} if error_trace is not None: __query["error_trace"] = error_trace if filter_path is not None: __query["filter_path"] = filter_path if human is not None: __query["human"] = human if pretty is not None: __query["pretty"] = pretty __body = detector __headers = {"accept": "application/json", "content-type": "application/json"} return self.perform_request( # type: ignore[return-value] "POST", __path, params=__query, headers=__headers, body=__body )